34 research outputs found

    Microstructural characterization and hardness properties of magnesium alloy processed by high pressure torsion

    Get PDF
    Abstract: Magnesium and magnesium alloys are the lightest of all metal used for structural construction. This property of magnesium made it to be the most used material in the automobile manufacturing industries and in aerospace as well as in other industries. This research is based on the process improvement of pure commensally magnesium alloy (Mg 99.94%) using high pressure torsion (HPT) process. The investigation was based on the measurement of hardness properties and microstructural characterization of magnesium alloy processed by high pressure torsion (HPT)

    Data showing the effects of disc milling time on the composition and morphological transformation of (aĂžb) titanium alloy (Tie6Ale2Sne2Moe2Cre2Zr-0.25Si) grade

    Get PDF
    Abstract: In powder metallurgy, dry mechanical milling process is an effective technique employed in the reduction of solid materials into the desired size in the fabrication of materials or components from metal powders for various applications. However, the milling operation introduces changes in the size and shape as well as the elemental or chemical composition of the milled substance. These changes introduced after milling requires critical analyses as the performance and efficiency of fabricated components depend so much on the size, shape and chemical composition of the powders. In this data, the effects of vibratory disc milling on the morphological transformation and elemental composition of titanium alloy powder were observed and analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The as received titanium alloy powder was subjected to dry mechanical milling machine rated 380V/50Hz at 940 rpm. Milling time of 2, 4, 6, 8 and 10 mins were adopted in this data collection. SEM and EDS analyses revealed that milling transformed the spherical shaped powders into plate-like shapes. This deformation in the shape of the powder increased with increase in milling time. Also,.

    Effect of heat treatment on microstructure and mechanical properties of magnesium alloy

    Get PDF
    Abstract: In this research study, the effect of heat treatment on mechanical properties, and microstructure characteristics of magnesium alloy with 99.94 % magnesium was studied. The heat treatment of samples was conducted at 150 ⁰C, 300 ⁰C, and 450 ⁰C for 2 hours. The samples were characterized by microstructure characterization using optical microscope (OEM) by observing the evolution of the microstructure of the heat-treated magnesium alloy. The hardness test was done on the surface of each sample using the load of 50 N to show the effect of heat treatment on the cross-section surface of magnesium alloy. From the results, the average grain sizes of the materials are different due to the different heat treatment and cooling rate of the materials.it is found that the hardness of the surface of the samples is higher at the edges of the samples than in the middle. The changes in average hardness of magnesium with the increase in temperature is due to an increase in grain size

    The future of renewable energy for electricity generation in sub-Saharan Africa

    Get PDF
    Abstract : Energy transition in the last decade has experienced increased quota of renewable energy in the global energy mix. In sub-Saharan Africa (SSA), the transition from the fossil fuel to the renewable energy source has been gradual. The state of renewable energy in the region in the next decade is the focus of this study. This study uses a single-layer perceptron artificial neural network (SLP-ANN) to backcast from 2015 to 2006 and forecast from 2016 to 2020 the percentage of renewable energy for electricity generation, exempting the hydropower in the energy mix of the SSA based on historical data. The backcast percentage renewable energy mix was evaluated using known statistical metrics for accuracy measures. The root mean square error (RMSE), mean absolute deviation (MAD) and mean absolute percentage error (MAPE) obtained were 0.29, 0.18, and 14.69 respectively. The result shows possibility of an increase in the percentage of renewable energy in the electricity sector in the region. In 2020, the percentage of renewable energy in sub-Saharan region is expected to rise to 4.13% with exclusion of the hydropower. With government policies encouraging the growth of the renewable energy as a means of power generation in the region, the predicted percentage and even more can be realized

    Wind turbine power output short-term forecast : a comparative study of data clustering techniques in a PSO-ANFIS model

    Get PDF
    Abstract:The emergence of new sites for wind energy exploration in South Africa requires an accurate prediction of the potential power output of a typical utility-scale wind turbine in such areas. However, careful selection of data clustering technique is very essential as it has a significant impact on the accuracy of the prediction. Adaptive neurofuzzy inference system (ANFIS), both in its standalone and hybrid form has been applied in offline and online forecast in wind energy studies, however, the effect of clustering techniques has not been reported despite its significance. Therefore, this study investigates the effect of the choice of clustering algorithm on the performance of a standalone ANFIS and ANFIS optimized with particle swarm optimization (PSO) technique using a synthetic wind turbine power output data of a potential site in the Eastern Cape, South Africa. In this study a wind resource map for the Eastern Cape province was developed. Also, autoregressive ANFIS models and their hybrids with PSO were developed. Each model was evaluated based on three clustering techniques (grid partitioning (GP), subtractive clustering (SC), and fuzzy-c-means (FCM)). The gross wind power of the model wind turbine was estimated from the wind speed data collected from the potential site at 10 min data resolution using Windographer software. The standalone and hybrid models were trained and tested with 70% and 30% of the dataset respectively. The performance of each clustering technique was compared for both standalone and PSO-ANFIS models using known statistical metrics. From our findings, ANFIS standalone model clustered with SC performed best among the standalone models with a root mean square error (RMSE) of 0.132, mean absolute percentage error (MAPE) of 30.94, a mean absolute deviation (MAD) of 0.077, relative mean bias error (rMBE) of 0.190 and variance accounted for (VAF) of 94.307. Also, PSO-ANFIS model clustered with SC technique performed the best among the three hybrid models with RMSE of 0.127, MAPE of 28.11, MAD of 0.078, rMBE of 0.190 and VAF of 94.311. The ANFIS-SC model recorded the lowest computational time of 30.23secs among the standalone models. However, the PSO-ANFIS-SC model recorded a computational time of 47.21secs. Based on our findings, a hybrid ANFIS model gives better forecast accuracy compared to the standalone model, though with a trade-off in the computational time. Since, the choice of clustering technique was observed to play a vital role in the forecast accuracy of standalone and hybrid models, this study recommends SC technique for ANFIS modeling at both standalone and hybrid models

    Property-based biomass feedstock grading using k-Nearest Neighbour technique

    Get PDF
    Abstract: Energy generation from biomass requires a nexus of different sources irrespective of origin. A detailed and scientific understanding of the class to which a biomass resource belongs is therefore highly essential for energy generation. An intelligent classification of biomass resources based on properties offers a high prospect in analytical, operational and strategic decision-making. This study proposes the -Nearest Neighbour (-NN) classification model to classify biomass based on their properties. The study scientifically classified 214 biomass dataset obtained from several articles published in reputable journals. Four different values of (=1,2,3,4) were experimented for various self normalizing distance functions and their results compared for effectiveness and efficiency in order to determine the optimal model. The -NN model based on Mahalanobis distance function revealed a great accuracy at =3 with Root Mean Squared Error (RMSE), Accuracy, Error, Sensitivity, Specificity, False positive rate, Kappa statistics and Computation time (in seconds) of 1.42, 0.703, 0.297, 0.580, 0.953, 0.047, 0.622, and 4.7 respectively. The authors concluded that -NN based classification model is feasible and reliable for biomass classification. The implementation of this classification models shows that -NN can serve as a handy tool for biomass resources classification irrespective of the sources and origins

    Neuro-fuzzy mid-term forecasting of electricity consumption using meteorological data

    Get PDF
    Abstract : Forecasting energy consumption is highly essential for strategic and operational planning. This study uses the Adaptive-Neuro-Fuzzy Inference System (ANFIS) for a mid-term forecast of electricity consumption. The model comprises of three meteorological variables as inputs and electricity consumption as output. Two ANFIS models with two clustering techniques (Fuzzy c-Means (FCM) and Grid Partitioning (GP) were developed (ANFIS-FCM and ANFIS- GP) to forecast monthly energy consumption based on meteorological variables. The performance of each model was determined using known statistical metrics. This compares the predicted electricity consumption with the observed and a statistical significance between the two reported. ANFIS-FCM model recorded a better mean absolute deviation (MAD), root mean square (RMSE), and mean absolute percentage error (MAPE) values of 0.396, 0.738, and 8.613 respectively compared to the ANFIS-GP model, which has MAD, RMSE, and MAPE values of 0.450, 0.762, and 9.430 values respectively. The study established that FCM is a good clustering technique in ANFIS compared to GP and recommended a comparison between the two techniques on hybrid ANFIS model

    Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: a mini review

    Get PDF
    Abstract:Site suitability problems in renewable energy studies have taken a new turn since the advent of geographical information system (GIS). GIS has been used for site suitability analysis for renewable energy due to its prowess in processing and analyzing attributes with geospatial components. Multi-criteria decision making (MCDM) tools are further used for criteria ranking in the order of influence on the study. Upon location of most appropriate sites, the need for intelligent resource forecast to aid in strategic and operational planning becomes necessary if viability of the investment will be enhanced and resource variability will be better understood. One of such intelligent models is the adaptive neuro-fuzzy inference system (ANFIS) and its variants. This study presents a mini-review of GIS-based MCDM facility location problems in wind and solar resource site suitability analysis and resource forecast using ANFIS-based models. We further present a framework for the integration of the two concepts in wind and solar energy studies. Various MCDM techniques for decision making with their strengths and weaknesses were presented. Country specific studies which apply GIS-based method in site suitability were presented with criteria considered. Similarly, country-specific studies in ANFIS-based resource forecasts for wind and solar energy were also presented. From our findings, there has been no technically valid range of values for spatial criteria and the analytical hierarchical process (AHP) has been commonly used for criteria ranking leaving other techniques less explored. Also, hybrid ANFIS models are more effective compared to standalone ANFIS models in resource forecast, and ANFIS optimized with population-based models has been mostly used. Finally, we present a roadmap for integrating GIS-MCDM site suitability studies with ANFIS-based modeling for improved strategic and operational planning

    Geospatial investigation of physico-chemical properties and thermodynamic parameters of biomass residue for energy generation

    Get PDF
    Abstract:Biomass represents vast under-explored feedstock for energy generation across the globe. Among other factors, the location from where the feedstock is harvested may affect the overall properties and the efficiency of bioreactors used in the conversion process. Herein is reported some physicochemical properties, the kinetic study and thermodynamic analysis of corn cob sourced from two major economies in sub-Sahara African region. Brunauer Emmett and Teller (BET) analysis was performed to investigate the surface characteristics of corn cob while Fourier Transform Infrared Spectroscopy (FTIR) revealed the corresponding functional group present in the selected biomass residue. The proximate and CHNSO analyses were performed using the standard equipment and following the standard procedures, then the result is reported and compared based on the geographical locations under consideration. Also, the thermal decomposition study was carried out at different heating rate (10, 15, 30 Cmin-1) in inert atmosphere while the kinetic parameters were evaluated based on Flynn–Wall–Ozawa (FWO), and Kissinger–Akahira–Sunose (KAS) methods The Analysis of variance (ANOVA) showed that there is a statistically significant difference between ultimate constituents, the fixed carbon, and volatile matter obtained from the two countries at 95% confidence level. FTIR showed different spectra peak in both samples which means there are varying quantity of structural elements in each feedstock. The pore surface area (1.375 m²/g ) obtained for corncob from South Africa (SC25) was greater than the value (1.074 m²/g ) obtained for Nigeria (NC25). From the result, the highest value of activation energy, (Ea =190.1 kJmol-1 and 189.9 kJmol-1) was estimated for SC25 based on KAS and FWO methods respectively. The result showed that geographical location may somewhat affect some energetic properties of biomass and further provides useful information about thermodynamic and kinetic parameters which could be deployed in the simulation, optimization and scale-up of the bioreactors for pyrolysis process

    Hybrid neurofuzzy wind power forecast and wind turbine location for embedded generation

    Get PDF
    Abstract:Wind energy uptake in South Africa is significantly increasing both at the micro‐ and macro‐level and the possibility of embedded generation cannot be undermined considering the state of electricity supply in the country. This study identifies a wind hotspot site in the Eastern Cape province, performs an in silico deployment of three utility‐scale wind turbines of 60 m hub height each from different manufacturers, develops machine learning models to forecast very short‐term power production of the three wind turbine generators (WTG) and investigates the feasibility of embedded generation for a potential livestock industry in the area. Windographer software was used to characterize and simulate the net output power from these turbines using the wind speed of the potential site. Two hybrid models of adaptive neurofuzzy inference system (ANFIS) comprising genetic algorithm and particle swarm optimization (PSO) each for a turbine were developed to forecast very short‐term power output. The feasibility of embedded generation for typical medium‐scale agricultural industry was investigated using a weighted Weber facility location model. The analytical hierarchical process (AHP) was used for weight determination. From our findings, the WTG‐1 was selected based on its error performance metrics (root mean square error of 0.180, mean absolute SD of 0.091 and coefficient of determination of 0.914 and CT = 702.3 seconds) in the optimal model (PSO‐ANFIS). Criteria were ranked based on their order of significance to the agricultural industry as proximity to water supply, labour availability, power supply and road network. Also, as a proof of concept, the optimal location of the industrial facility relative to other criteria was X = 19.24 m, Y = 47.11 m. This study reveals the significance of resource forecasting and feasibility of embedded generation, thus improving the quality of preliminary resource assessment and facility location among site developers
    corecore